Keliling Lingkaran Dengan Diameter 28 Cm Adalah

Unsur-Unsur Lingkaran

Dirangkum dari “Buku Pintar Bimbel SMP Kelas 7, 8, 9” oleh Budi Lintang S.Pd.I, berikut unsur-unsur lingkaran.

Gambar lingkaran (Katadata)

Titik pusat lingkaran adalah titik yang terletak di tengah-tengah lingkaran. Pada gambar datas, titik O adalah titik pusat lingkaran.

Jari-jari lingkaran adalah garis dari titik pusat lingkaran ke lengkungan lingkaran. Pada gambar, jari-jari lingkaran ditunjukkan oleh garis OA, OB, dan OC.

Diameter adalah garis lurus yang menghubungkan dua titik pada lengkungan lingkaran dan melalui titik pusat. Garis AB pada lingkaran O merupakan diameter lingkaran tersebut. Perhatikan bahwa BC =BO + OC. Dengan demikian, nilai diameter merupakan dua kali nilai jari-jari, maka d = 2r.

Dalam lingkaran, busur adalah garis lengkung yang terletak pada lengkungan lingkaran dan menghubungkan dua titik sebarang di lengkungan tersebut. Dalam gambar, garis lengkung AC, CB, dan AB adalah busur lingkaran.

Tali busur lingkaran adalah garis lurus dalam lingkaran yang menghubungkan dua titik pada lengkungan lingkaran. Berbeda dengan diameter, tali busur tidak melalui titik pusat lingkaran O. Tali busur lingkaran tersebut ditunjukkan oleh garis lurus AC yang tidak melalui titik pusat pada gambar tersebut.

Tembereng adalah luas daerah dalam lingkaran yang dibatasi oleh busur dan tali busur. Daerah yang dibatasi oleh busur AC dan tali busur AC adalah tembereng.

Juring lingkaran adalah luas daerah dalam lingkaran yang dibatasi oleh dua buah jari-jari lingkaran dan sebuah busur yang diapit oleh kedua jari-jari lingkaran. Pada gambar, juring lingkaran ditunjukkan oleh daerah yang diarsir dan dibatasi oleh jari-jari OA dan OB serta busur AB, dinamakan juring BOA.

Apotema merupakan garis yang menghubungkan titik pusat lingkaran dengan tali busur lingkaran tersebut. Garis yang dibentuk bersifat tegak lurus dengan tali busur.

Artikel ini disusun bersama

. Grace Imson adalah guru matematika dengan 40 tahun pengalaman mengajar. Grace saat ini adalah pengajar matematika di City College of San Francisco dan sebelumnya bekerja di Math Department di Saint Louis University. Dia mengajar matematika di sekolah dasar, sekolah menengah, dan perguruan tinggi. Grace memiliki gelar MA dalam Pendidikan, dengan spesialisasi Administrasi dan Pengawasan, dari Saint Louis University. Artikel ini telah dilihat 596.204 kali.

Halaman ini telah diakses sebanyak 596.204 kali.

Lingkaran adalah garis melengkung yang kedua ujungnya bertemu pada jarak yang sama dari titik pusat. Kedudukan titik-titik pada bidang datar berjarak sama dengan sebuah titik tertentu pada bidang tersebut. Titik tertentu itu disebut sebagai titik pusat lingkaran.

Lingkaran adalah bentuk yang sangat simetris. Setiap garis yang melalui pusat membentuk garis simetri refleksi dan memiliki simetri putar di sekitar pusat untuk setiap sudut.

Menurut publikasi University of Cambridge dalam nrich.maths.org, lingkaran mengandung makna simbolis. Bentuk ini sering digunakan untuk melambangkan harmoni dan persatuan.

Misalnya, pada simbol Olimpiade, terdapat memiliki lima lingkaran berkaitan dengan warna berbeda. Ini mewakili lima benua utama dunia yang bersatu dalam semangat persaingan yang sehat.

Materi geometri dalam matematika membahas lebih lanjut tentang keliling lingkaran sebagai berikut.

Apa yang Dimaksud dengan “Lingkaran”?

Secara singkat, lingkaran adalah salah satu bangun datar. Jenis bangun datar yang mirip bentuk ban sepeda ini memiliki berbagai rumus yang nggak terlepas dari bagian ilmu Matematika. Kita akan mengetahui serba-serbi rumus lingkaran yang akan kita ulas kali ini.

Namun sebelum itu, kenalan dulu yuk, dengan identitas dari lingkaran.

Lingkaran adalah himpunan semua titik di bidang yang berjarak sama dari suatu titik tetap. Titik tetap ini yang kemudian disebut sebagai pusat lingkaran. Sedangkan, jarak dari pusat ke setiap titik disebut dengan jari-jari.

Biar lebih tergambar, Skollamate bisa lanjut baca bagian di bawah ini untuk tahu detail tentang unsur-unsur lingkaran, ya!

Sudut Pusat dan Keliling Lingkaran

Sudut pusat adalah sudut yang dibentuk oleh dua buah jari-jari lingkaran. Ukuran sudut pusat sama dengan dua kali sudut keliling. Sedangkan sudut keliling adalah sudut yang terbentuk dari dua buah tali busur yang berpotongan pada keliling sebuah lingkaran.

Sudut keliling lingkaran dibedakan menjadi:

Itulah macam rumus keliling lingkaran yang dapat digunakan dalam materi matematika.

TEMPO.CO, Jakarta - Lingkaran adalah salah satu bentuk bangun datar yang berjarak sama terhadap satu titik tertentu. Titik tertentu yang dimaksud berada tepat di tengah lingkaran yang disebut sebagai titik pusat lingkaran.

Penentuan luas dan keliling lingkaran umumnya muncul dalam mata pelajaran Matematika sejak duduk di bangku kelas empat sekolah dasar (SD). Lantas, bagaimana rumus keliling lingkaran?

Unsur-Unsur Lingkaran

Titik tetap yang menjadi pusat dari semua titik pada lingkaran, yaitu O.

Jarak dari pusat lingkaran ke setiap titik pada lingkaran, yaitu AO, OB, atau OC.

Jarak terpanjang yang menghubungkan dua titik pada lingkaran melalui pusat, yaitu AB.

Bagian dari keliling lingkaran yang terletak antara dua titik pada lingkaran, yaitu BC.

Garis yang menghubungkan dua titik pada lingkaran tanpa melewati pusat, yaitu AC.

Garis tegak lurus dari pusat lingkaran ke tali busur, yaitu OD dalam segitiga OAC.

Daerah dalam lingkaran yang dibatasi oleh busur dan tali busur.

Daerah yang dibatasi oleh dua jari-jari dan sebuah tali busur, yaitu BOC.

Contoh Soal Keliling Lingkaran 1

Keliling lingkaran dengan jari-jari 14 cm adalah...

a. 22 cmb. 44 cmc. 88 cmd. 110 cm

Jari-jari = r = 14 cmKeliling lingkaran = 2πrK = 2 x (22/7) x 14 cmK = 88 cm

Maka jawaban yang benar adalah C.

Rumus Keliling Lingkaran

Sebuah lingkaran membentuk garis lengkung dengan panjang tertentu yang disebut keliling.

Rumus keliling lingkaran adalah K = 2πr atau K = πd. Lambang K adalah keliling lingkaran.

Hasil bagi keliling dengan diameter lingkaran akan diperoleh bilangan yang nilainya 3,14 atau dapat juga menggunakan pembagian 22/7 yang disebut pi (π). Sedangkan r adalah jari-jari lingkaran.

Selain keliling lingkaran penuh, terdapat rumus untuk menghitung keliling setengah, seperempat, dan tiga perempat lingkaran. Bersumber dari buku “Pasti Bisa Matematika untuk SD/MI Kelas VI” oleh Tim Tunas Karya Guru, berikut pembahasannya.

Gambar Lingkaran (Dok. Penerbit Duta)

Rumus keliling lingkaran dalam gambar tersebut adalah:

1. Sebuah lingkaran mempunyai diameter 28 cm maka keliling lingkaran tersebut adalah…

Maka, hasil keliling lingkaran adalah 88 cm.

2. Sebuah lingkaran memiliki jari-jari 20 cm, berapa keliling lingkaran tersebut?

Jadi, keliling lingkaran tersebut adalah 125,6 cm.

Lingkaran memiliki bentuk lengkung atau melingkar pada seluruh sisinya.  Rumus luas lingkaran adalah L = πr2.

Adapun untuk menghitung luas setengah, seperempat, dan tiga per empat menggunakan:

Rumus Keliling Lingkaran

Keliling lingkaran dapat dihitung dengan mengetahui nilai Pi (π) dan jari-jari atau radius lingkaran (r) atau diameter lingkaran (d). Rumus keliling lingkaran adalah K = 2πr atau K = πd. K merupakan lambang keliling lingkaran. Sedangkan nilai π yaitu 22/7 atau 3,14.

Jika diketahui diameter, maka rumus keliling lingkaran adalah K = πd

Jika diketahui jari-jari, maka rumus keliling lingkaran adalah K = 2πr

Contoh Soal Perhitungan Keliling Lingkaran

Melansir smpn3payakumbuh.sch.id, berikut contoh soal dan pembahasan keliling lingkaran:

Hitunglah keliling lingkaran yang mempunyai diameter 15 cm dengan π = 3,14.

Keliling = πd = 3,14 x 15 cm = 47,1 cm.

Hitunglah diameter lingkaran yang mempunyai keliling 25,12 cm dan π = 3,14.

Jadi, diameter lingkaran tersebut adalah 8 cm.

Tentukan keliling lingkaran yang berdiameter 21 cm dan π = 22/7.

Keliling = πd = 22/7 x 21 cm = 22 x 3 cm = 66 cm.

Tentukan keliling lingkaran yang berdiameter 35 cm dan π = 22/7.

Keliling = πd = 22/7 x 35 cm = 22 x 5 cm = 110 cm.

Tentukan keliling lingkaran yang berdiameter 49 cm dan π = 22/7.

Keliling = πd = 22/7 x 49 cm = 22 x 7 cm = 154 cm.

Tentukan keliling lingkaran yang berdiameter 38,5 cm dan π = 22/7/

Keliling = πd = 22/7 x 38,5 cm = 22 x 5,5 cm = 121 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 10 cm dan π = 3,14.

Keliling = 2πr = 2 x 3,14 x 10 cm = 62,8 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 15 cm dan π = 3,14.

Keliling = 2πr = 2 x 3,14 x 15 cm = 94,2 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 36 cm dan π = 3,14.

Keliling = 2πr = 2 x 3,14 x 36 cm = 226,08 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 15,5 cm dan π = 3,14.

Keliling = 2πr = 2 x 3,14 x 15,5 cm = 97,34 cm.

Diameter mata uang koin lima ratus rupiah adalah 15 mm. Hitunglah kelilingnya.

Keliling = 2πr = 2 x 3,14 x 15 mm = 94,2 mm.

Diameter sebuah roda mobil adalah 42 cm. Hitunglah keliling roda tersebut.

Keliling = πd = 22/7 x 42 cm = 22 x 6 cm = 132 cm.

Skollamate, ketika pertama kali mendengar lingkaran, apa yang ada di pikiranmu? Hmm… Ban sepeda, kancing, jam dinding, atau pizza? Betul! Pasti kamu bisa menyebutkan banyak benda berbentuk lingkaran.

Tahukah kamu kalau benda yang kamu sebutkan tadi adalah gerbang dari sebuah konsep ilmu Matematika?

Ya! Tanpa kamu sadari, dulu kamu mengenal lingkaran hanya sebagai jenis “bentuk”. Tapi sekarang, kamu akan mengenal lingkaran lebih jauh lagi sebagai salah satu dari konsep Matematika, yaitu “bangun datar”. Menarik, kan?

Nggak sebatas bentuknya melingkar, kamu akan lebih tau serba-serbi tentang lingkaran. Kamu juga bakal ketemu rumus lingkaran yang nggak cuma ada satu. Penasaran mau pelajarin lebih lanjut? Yuk, baca di artikel ini!

Contoh Soal Keliling Lingkaran 2

Jika garis tengah sebuah lingkaran sepanjang 20 cm, berapa keliling lingkaran tersebut?

Garis tengah = diameter = d = 20 cmKeliling lingkaran = πdK = 3,14 x 20 cmK = 62,8 x cm

Maka, jawaban yang benar adalah 62,8 cm

Nah, itu dia cara menghitung keliling lingkaran beserta contoh soalnya. Yuk, coba latihan menggunakan rumus keliling lingkaran !

Diameter lingkaran adalah sebarang ruas garis lurus yang melalui pusat lingkaran dan titik akhirnya ada pada keliling lingkaran. Titik-titik akhir diameter yang diberikan adalah dan . Titik pusat lingkaran adalah pusat diameter, yang merupakan titik tengah antara dan . Dalam hal ini titik tengahnya adalah .